SFP-10G-SR

850nm SFP+ Multi-Mode Transceiver, With Diagnostic Monitoring 10G BASE-SW/SR

Duplex SFP+ Transceiver, RoHS 6 Compliant

Features

Operating data rate up to 10.3Gbps

850nm VCSEL Transmitter

Distance up to 300m @50 / 125 um MMF

Single 3.3V Power supply and TTL Logic Interface

Duplex LC Connector Interface, Hot Pluggable

Compliant with MSA SFP+ Specification SFF-8431

Compliant with IEEE 802.3ae 10GBASE-SR/SW

Power Dissipation < 1.0W

Dispersion tolerance up to 40ps/nm over G.651

Operating Case Temperature

Standard: 0 °C~+70 °C

Extended: -10 °C~+85°C

Applications

10GBASE-SW at 9.953Gbps

10GBASE-SR at 10.3125Gbps

Other Optical Link

Ordering information

Part No.	Data Rate	Laser	Fiber Type	Distance	Temp.	DDMI
SFP-10G-SR	9.95Gbps to 10.3Gbps	850nm VCSEL	MMF	300m	Standard	YES

Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883G Method 3015.7	Class 1C (>1000 V)
Electrostatic Discharge to the enclosure	EN 55024:1998+A1+A2 IEC-61000-4-2 GR-1089-CORE	Compliant with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN55022:2006 CISPR 22B :2006 VCCI Class B	Compliant with standards Noise frequency range: 30 MHz to 6 GHz. Good system EMI design practice required to achieve Class B margins. System margins depend on customer host board and chassis design.
Immunity	EN 55024:1998+A1+A2 IEC 61000-4-3	Compliant with standards. 1kHz sine-wave, 80% AM, from 80 MHz to 1 GHz. No effect on transmitter/receiver performance is detectable between these limits.
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1:2007 EN (IEC) 60825-2:2004+A1	CDRH compliant and Class I laser product. TüV Certificate No. 50135086
Component Recognition	UL and CUL EN60950-1:2006	UL file E317337 TüV Certificate No. 50135086 (CB scheme)
RoHS6	2002/95/EC 4.1&4.2 2005/747/EC 5&7&13	Compliant with standards *note1

Product Description

The SFP-10G-SR series multi-mode transceiver is SFP+ module for duplex optical data communications such as 10GBASE-SR and 10GBASE-SW. It is with the SFP+ 20-pin connector to allow hot plug capability. Digital diagnostic functions are available via an $\rm I^2C$. This module is designed for multi-mode fiber and operates at a nominal wavelength of 850 nm .

The transmitter section uses a Vertical Cavity Surface Emitted Laser (VCSEL) and is a Class 1 laser compliant according to International Safety Standard IEC 60825. The receiver section uses an integrated GaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	<u>ر</u>
Supply Voltage	V _{CC}	-0.5	3.6	V
Input Voltage	Vin	-0.5	Vcc	V
Output Current	lo	-	50	mA

Recommended Operating Conditions

Parameter	Symbol		Min.	Typical	Max.	Unit	
Operating Case	SFP-10G-SR		0		70	C	
Temperature	T _c						
Power Supply Voltage	V _{cc}		3.15	3.3	3.45	V	
Power Supply Current	I _{cc}				300	mA	
Surge Current	I _{Surge}				+30	mA	
Baud Rate	10GBASE-SR			10.31		Gbps	
Daud Nate	10GBASE-SW			9.95		Gbps	

Performance Specifications – Electrical

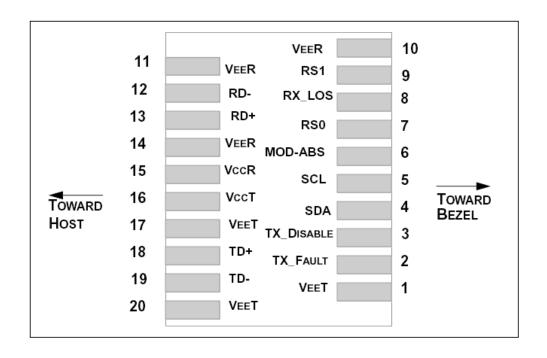
Parameter	Symbol	Min.	Тур.	Max	Unit	Notes	
Transmitter							
CML Inputs(Differential)	Vin	150		1200	mVpp	AC coupled inputs	
Input Impedance (Differential)	Zin	85	100	115	ohms	Rin > 100 kohms @ DC	
Tx_DISABLE Input Voltage – High		2		Vcc+0.3	V		
Tx_DISABLE Input		0		0.8	V		

SFP+Series

Voltage – Low								
Tx_FAULT Output Voltage – High		2		Vcc+0.3	V	lo = 400μA; Host Vcc		
Tx_FAULT Output Voltage – Low		0		0.8	V	lo = -4.0Ma		
	Receiver							
CML Outputs (Differential)	Vout	350		700	mVpp	AC coupled outputs		
Output Impedance (Differential)	Zout	85	100	115	ohms			
Rx_LOS Output Voltage – High		2		Vcc+0.3	V	lo = 400μA; Host Vcc		
Rx_LOS Output Voltage – Low		0		0.8	V	lo = -4.0Ma		
MOD_DEF (2:0)	VoH	2.5			V	With Serial ID		
	VoL	0		0.5	V	vviui seriariD		

Optical and Electrical Characteristics

Parameter	Symbol	Min.	Typical	Max.	Unit
50 / 125 um MMF			300		m
Data Rate			10.3125		Gbps
	Transmitter				
Centre Wavelength	С	840	850	860	nm
Spectral Width (RMS)				0.45	nm
Average Output Power	P _{out}	-6		-1	dBm
Extinction Ratio	ER	3.0	5.0		dB
Output Optical Eye		I	EEE 802.3-200)5 Compliant	
Transmitter Dispersion Penalty	TDP			3.9	dB
Input Differential Impedance	Z _{IN}	90	100	110	
TX_Disable Assert Time	t_off			10	us
TX_DISABLE Negate Time	t_on	-	-	1	ms
TX_BISABLE time to start reset	t_reset	10	-	-	us
Time to initialize, include reset of TX_FAULT	t_init	-	-	300	ms
TX_FAULT from fault to assertion	t_fault	-	-	100	us
Total Jitter	TJ	-	-	0.28	UI(p-p)
Data Dependant Jitter	DDJ	-	-	0.1	UI(p-p)
Uncorrelated Jitter	UJ	-	-	0.023	RMS
Receiver					
Centre Wavelength	С	840	850	860	nm
Receiver Sensitivity	Pmin			-11.1	dBm
Output Differential Impedance	R _{IN}	90	100	110	


SFP+ Series


Receiver Overload ²		Pmax	-1		dBm
Optical Return Loss		ORL		-12	dB
LOS De-Assert		LOS _D		-12.5	dBm
LOS Assert		LOS A	-25		dBm
LOS Hysteresis			0.5		dB
100	High		2.0	V _{CC} +0.3	٧
LOS	Low		0	0.8	٧

 $\leq 10^{-12}$

Note 2: Measured with a PRBS 2 ³¹ -1 test pattern @ 10.3125Gbps, BER

SFP+ Transceiver Electrical Pad Layout

Page 5 of 11

Pin Function Definitions

Pin Num.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2, Module disables on high or open
4	SDA	Module Definition 2	3	2-wire Serial Interface Data Line.
5	SCL	Module Definition 1	3	2-wire Serial Interface Clock.
6	MOD-ABS	Module Definition 0	3	Note 3
7	RS0	RX Rate Select (LVTTL).	3	Rate Select 0, optionally controls SFP+ module receiver. This pin is pulled low to VeeT with a >30K resistor
8	LOS	Loss of Signal	3	Note 4
9	RS1	TX Rate Select (LVTTL).	1	Rate Select 1, optionally controls SFP+ module transmitter. This pin is pulled low to VeeT with a >30K resistor.
10	VeeR	Receiver Ground	1	Note 5
11	VeeR	Receiver Ground	1	Note 5
12	RD-	Inv. Received Data Out	3	Note 6
13	RD+	Received Data Out	3	Note 6
14	VeeR	Receiver Ground	1	Note 5
15	VccR	Receiver Power	2	3.3V ± 5%, Note 7
16	VccT	Transmitter Power	2	3.3V ± 5%, Note 7
17	VeeT	Transmitter Ground	1	Note 5
18	TD+	Transmit Data In	3	Note 8
19	TD-	Inv. Transmit Data In	3	Note 8
20	VeeT	Transmitter Ground	1	Note 5

1) TX Fault is an open collector/drain output, which should be pulled up with a 4.7K - 10K resistor on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

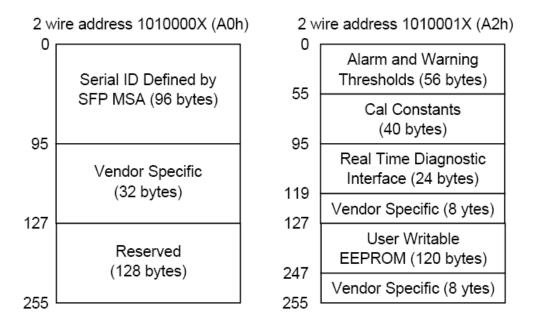
2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7K\sim10\,K$ resistor. Its states are:

Low (0 – 0.8V): Transmitter on

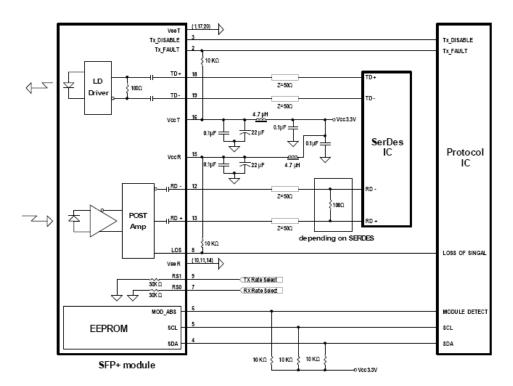
(>0.8, < 2.0V): Undefined

High (2.0 – 3.465V): Transmitter Disabled

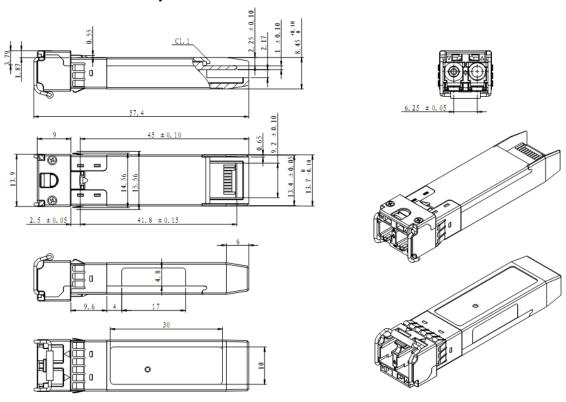
Open: Transmitter Disabled


- 3) Module Absent, connected to VeeT or VeeR in the module.
- 4) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K 10K resistor. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 5) The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
- 6) RD-/+: These are the differential receiver outputs. They are AC coupled 100 differential lines which should be terminated with 100 (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 700 Mv differential (185 –350 Mv single ended) when properly terminated.
- 7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP+ connector pin. Maximum supply current is 300Ma. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP+ input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP+ transceiver module will result in an inrush current of no more than 30Ma greater than the steady state value. VccR and VccT may be internally connected within the SFP+ transceiver module.
- 8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100 differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 150 1200 Mv (75 600Mv single-ended), though it is recommended that values between 150 and 1200 Mv differential (75 600Mv single-ended) be used for best EMI performance.

EEPROM


The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C02/04 family of components. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not writing protected within the SFP+ transceiver. The negative edge clocks data from the SFP+ transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host

uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.


The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2H. The digital diagnostic memory map specific data field define as following .For detail EEPROM information, please refer to the related document of SFF 8472 Rev 10.3.

Recommend Circuit Schematic

Mechanical Specifications

Page 9 of 11